[编者按]:《元宇宙十万个为什么》是至顶网策划的一档特别栏目,我们希望做元宇宙时代的观察者、记录者、推动者。本篇为该系列第十五问,并同步更新在「QA相对论」微信公众号中,敬请关注。
——
上一期我们介绍了元宇宙在B端(企业级)场景中的价值。本期第十五问我们来探讨元宇宙技术在工业场景中的价值。
关注公众号「QA相对论」,获取「元宇宙十万个为什么」。

好文章,需要你的鼓励
随着AI在各行业深度应用,传统的"学会编程"建议已不再适用。UCLA等机构的CIO表示,现在更看重候选人的批判性思维、问题解决能力和适应技术变化的敏捷性。新毕业生需要展现AI素养、数据理解能力、云技术expertise和安全意识。编程岗位演变为更具战略性的角色,类似指挥家协调AI工具。入门级职位因自动化而减少,求职者需具备更高技能水平,能够与AI协作而非被其取代。
加州大学伯克利分校研究团队成功让Transformer AI直接从原子三维坐标学习分子结构,无需传统的分子图谱。10亿参数模型在OMol25数据集上的表现可媲美先进图神经网络,且运行更快。AI自发学会了距离-相互作用关系,并能根据分子环境自适应调整关注范围。研究验证了分子AI的规模定律,暗示更大模型将带来更好性能。这项工作为分子建模提供了全新范式,有望推动药物设计和材料科学发展。
9月份LockBit勒索软件新版本的幕后操作者大幅扩大了攻击目标,整体勒索软件攻击激增超过四分之一。NCC集团报告显示攻击量六个月来首次上升28%至421起事件。尽管LockBit曾在Operation Cronos行动中被重创,但其管理员LockBitSupp持续活动。LockBit 5.0新增多平台支持、增强反分析功能、更快加密速度等特性,9月份至少造成十几个受害者,标志着该组织运营恢复。
MediaTek Research团队提出颠覆性"沙漏"MLP架构,将传统"窄-宽-窄"设计反转为"宽-窄-宽",在高维空间进行渐进改进。通过固定随机投影技术,新架构在多项生成任务中显著优于传统设计,用更少参数实现更好性能。研究验证了高维空间增量学习的优越性,为神经网络设计开辟新思路,并展示了向变换器等架构扩展的潜力。