过去一年来,提示词工程已经成为AI行业内的新兴热门岗位,而Anthropic则有意开发工具将它推向自动化——或者说,至少是一部分自动化。
根据Anthropic的博客文章,它在本周二公布了多项新功能,以帮助开发人员使用它的大语言模型Claude创建出更具实用性的应用程序。开发人员现在可以使用Claude 3.5 Sonnet来生成、测试和评估提示词,使用提示词工程技术进一步优化输入内容,从而改进Claude在特定任务上的回答质量。
当我们要求语言模型执行某些任务时,它对于输入内容一般比较宽容,但有时对提示措辞的微小变更则可能大大提升输出结果的质量表现。以往我们必须亲自调试措辞,或者聘请提示词工程师专门负责此事,但这次公布的新功能提供快速反馈、能帮助用户轻松找到符合预期的改进方向。
这些功能就旋转在Anthropic控制台的新增Evaluate评估选项卡下。控制台是该公司专门为开发人员提供的测试平台,旨在吸引更多企业客户使用Claude构建产品。其中一项功能正是Anthropic内置的提示词生成器,已经于今年5月推出。这款生成器利用Anthropic内部原研的提示词工程技术,可对任务做出简短描述,也可构建出更长、更详尽的提示内容。虽然Anthropic的工具可能还无法彻底取代提示词工程师,但该公司表示它有助于降低新用户的上手门槛,也能为经验丰富的提示词工程师们节约时间。
在评估选项卡中,开发人员可以测试自己的AI应用提示词在各类场景下的实际效果。开发人员可以将真实示例上传至该测试套件,也可以要求Claude提供一系列由AI生成的测试用例。之后,开发人员可以直接比较各类提示词的有效性,并以五分制对示例答案进行评分。
Anthropic在文章中列举的示例中,开发人员发现自己的应用程序在多个测试用例中都存在答案长度太短的问题。开发人员只需调整提示词中的一行就能扩展答案长度,并将它同时应用于所有测试用例。这无疑将为开发人员节省大量时间和精力,特别是那些几乎或者完全不具备提示词工程经验的开发人员。
Anthropic公司CEO兼联合创始人Dario Amodei在今年早些时候在Google Cloud Next大会上接受采访时表示,提示词工程是企业广泛采用生成式AI的关键因素、甚至说前提之一。Amodei总结称:“这事看似简单,但让专业提示词工程师上手30分钟,往往可以决定一种应用到底能不能顺利运行、达成目标。”
好文章,需要你的鼓励
阿里团队开发的FantasyPortrait系统突破了传统人像动画的局限,通过隐式表情表示和掩码交叉注意力机制,实现了高质量的单人和多人肖像动画生成,特别在跨身份表情迁移方面表现出色,为视频制作和虚拟交流等领域带来新的技术可能性。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
Akamai坚持“简而未减、网络先行、拥抱开源”的独特定位。凭借“鱼与熊掌兼得”的特色,过去几年,Akamai在电商、流媒体、广告科技、SaaS、金融科技等行业客户中获得了广泛认可。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。