过去一年来,提示词工程已经成为AI行业内的新兴热门岗位,而Anthropic则有意开发工具将它推向自动化——或者说,至少是一部分自动化。
根据Anthropic的博客文章,它在本周二公布了多项新功能,以帮助开发人员使用它的大语言模型Claude创建出更具实用性的应用程序。开发人员现在可以使用Claude 3.5 Sonnet来生成、测试和评估提示词,使用提示词工程技术进一步优化输入内容,从而改进Claude在特定任务上的回答质量。
当我们要求语言模型执行某些任务时,它对于输入内容一般比较宽容,但有时对提示措辞的微小变更则可能大大提升输出结果的质量表现。以往我们必须亲自调试措辞,或者聘请提示词工程师专门负责此事,但这次公布的新功能提供快速反馈、能帮助用户轻松找到符合预期的改进方向。
这些功能就旋转在Anthropic控制台的新增Evaluate评估选项卡下。控制台是该公司专门为开发人员提供的测试平台,旨在吸引更多企业客户使用Claude构建产品。其中一项功能正是Anthropic内置的提示词生成器,已经于今年5月推出。这款生成器利用Anthropic内部原研的提示词工程技术,可对任务做出简短描述,也可构建出更长、更详尽的提示内容。虽然Anthropic的工具可能还无法彻底取代提示词工程师,但该公司表示它有助于降低新用户的上手门槛,也能为经验丰富的提示词工程师们节约时间。
在评估选项卡中,开发人员可以测试自己的AI应用提示词在各类场景下的实际效果。开发人员可以将真实示例上传至该测试套件,也可以要求Claude提供一系列由AI生成的测试用例。之后,开发人员可以直接比较各类提示词的有效性,并以五分制对示例答案进行评分。
Anthropic在文章中列举的示例中,开发人员发现自己的应用程序在多个测试用例中都存在答案长度太短的问题。开发人员只需调整提示词中的一行就能扩展答案长度,并将它同时应用于所有测试用例。这无疑将为开发人员节省大量时间和精力,特别是那些几乎或者完全不具备提示词工程经验的开发人员。
Anthropic公司CEO兼联合创始人Dario Amodei在今年早些时候在Google Cloud Next大会上接受采访时表示,提示词工程是企业广泛采用生成式AI的关键因素、甚至说前提之一。Amodei总结称:“这事看似简单,但让专业提示词工程师上手30分钟,往往可以决定一种应用到底能不能顺利运行、达成目标。”
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。