虽然已经是2025年,但许多公司似乎仍然不清楚AI的实际用途。
这正是我从今年的CES上得到的印象:展会上展示了许多AI驱动的厨房电器、婴儿床和其他其实并不需要AI的产品。

例如:Spicerr,一款配备“智能”触摸屏的调味品分配器,可以在你做饭时学习你的口味,推荐独特的食谱。
然而,Spicerr的实用性本身就值得怀疑。它不具备研磨功能,而且需要15到20美元的专用胶囊,这些胶囊无法重新填充。即便如此,你真的需要一个
可以推荐菜谱的盐和胡椒调味瓶吗?
在展会的其他地方,还出现了Dreo的ChefMaker 2,一款AI驱动的空气炸锅。
是的,你没有看错——这是一款AI驱动的空气炸锅。
相比Spicerr,ChefMaker 2的概念并不那么荒唐。它可以通过扫描页面从食谱书中提取食谱,甚至能够处理计算烹饪时间和温度的复杂数学问题。
不过,扫描食谱书真的是空气炸锅买家真正需求的功能吗?作为一个空气炸锅的用户,我从未考虑过这个问题——似乎大多数人也没有。
然而,CES上还有更多比这还要奇怪的AI产品。
Razer的Project Ava,奇怪地以2014年电影《机械姬》(Ex Machina)中的杀手机器人Ava命名,是一款“AI游戏助手”,正如公司所描述的那样。Ava基本上并不直接玩游戏,而是在你玩游戏时为你提供指导。得到许可后,Ava会捕捉你的屏幕截图,并给出一些建议(例如:“当刀片旋转时躲开”)。
正如The Verge编辑Sean Hollister所写的,Ava引发争议的原因在于,它显然是通过游戏攻略训练的,但却没有标明这些攻略的作者。此外,Ava还有些分散注意力。至少在目前的版本中,Ava有几秒钟的延迟,并且会打断游戏的音频来提供指令。
我不得不再次问:究竟是谁在呼唤这些鬼东西?谁会定期使用它,甚至为它付费?
从目前来看,CES上这些奇怪的AI产品体现了行业的过度炒作。去年,AI公司仅在美国就筹集了970亿美元,足够购买42个Spheres(注:Spheres是一个虚构的概念或项目)。厂商们正在尝试各种AI产品,看看哪些能成功,因为这样做几乎没有风险——而且潜力巨大。
但在许多情况下,他们也面临着现有AI技术的局限。弄清楚哪些AI应用在技术上可行一直是行业的一大挑战。很多时候,这导致了过度承诺,但未能兑现。ChatGPT仍然会犯错;图像生成器在历史上也不够准确;AI视频中的角色常常会“重叠”……
所以我们只能接受现实中的AI乱象:空气炸锅、调味品分配器和“AI游戏助手”。这些并不是大多数人想要的,但它们是目前相对容易实现的AI产品。
希望明年能有更好的进展。
好文章,需要你的鼓励
谷歌Agent Development Kit(ADK)革新了AI应用开发模式,采用事件驱动的运行时架构,将代理、工具和持久化状态整合为统一应用。ADK以Runner为核心,通过事件循环处理用户请求、模型调用和外部工具执行。执行逻辑层管理LLM调用和工具回调,服务层提供会话、文件存储等持久化能力。这种架构支持多步推理、实时反馈和状态管理,为构建超越简单聊天界面的生产级AI应用提供了完整框架。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
苹果在iOS 26中推出全新游戏应用,为iPhone、iPad和Mac用户提供个性化的游戏中心。该应用包含五个主要版块:主页展示最近游戏和推荐内容,Arcade专区提供超过200款无广告游戏,好友功能显示Game Center动态并支持游戏挑战,资料库可浏览已安装游戏并提供筛选选项,搜索功能支持按类别浏览。iOS 26.2版本还增加了游戏手柄导航支持,为游戏玩家提供更便捷的操作体验。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。