来自剑桥大学的研究人员在《哲学与技术》(Philosophy & Technology)期刊上称:“人们对于能解决面试偏见等问题的新方法越来越感兴趣。”AI的实际应用正愈发普遍,但在通过视频或应用指标遴选求职者方面仍处于“伪科学”的水平。
曾有人力资源专业机构向媒体放话,称AI技术有望对抗偏见。
研究发现,2020年一项针对500名人力资源专业人士的跨国调查表明,近四分之一的从业者正在利用AI“以自动化方式选拔人才。”但这种减少偏见的探索似乎并未奏效,剑桥大学性别研究中心博士后研究员Kerry Mackereth在采访中表示,这事完全就是在“扯淡”。
她解释道:“这些工具无法通过训练获得单纯识别工作相关特征的能力,也不能从招聘过程中剔除性别和种族因素。这是因为人类总认为,一位员工是否优秀会不可避免地与其性别、特征和种族存在内在关联。”
也有研究指出,一些公司还发现这些工具本身也存在问题。2018年,亚马逊就宣布放弃开发AI驱动型招聘引擎,因为发现其会从简历中检测性别并歧视女性求职者。
“现代颅相学”
研究人员还特别关注那些能够“分析候选人言语与肢体动作细节”的工具,据称这些细微要素也能体现对象是否符合特定职位的要求。
研究合作者Eleanor Drage博士则坦言,这类视频与图像分析技术“没有科学依据”,并将其斥为“现代颅相学”——即依靠颅骨形状推断性格与智力的虚假理论。
她强调:“他们认为可以通过面部观察了解对方的性格。这种想法就跟测试工具一样根本不靠谱。AI没办法‘透过’面孔看到真实的内在。”
剑桥工具截屏
研究人员们还与六名计算机科学专业的学生一道,构建起自己的简化版AI招聘工具,基于所谓“五大”人格特征对候选者照片进行评分:
但最终评级还是会受到种种非相关变量的影响。
Drage博士写道:“在使用这些工具时,可以看到只要调整图像的对比度/亮度/饱和度,AI得出的性格结论就会发生变化。”
The Register指出,其他调查也得到了类似的结论。
德国一家公共广播公司甚至发现,在视频中佩戴眼镜或头巾,也会影响到候选者的最终得分。
英国特许人事与发展协会(Chartered Institute of Personnel and Development)的Hayfa Mohdzaini指出,他们的研究表明只有8%的企业雇主会使用AI技术来筛选求职人才。
“AI确实可以加大候选人才库的整体规模,借此帮助组织提升多样性水平——但如果规则和训练数据不完整或不准确,也有可能错失很多优秀的求职者。”
她总结称:“目前,用于对候选者言语和肢体语言进行分析的AI软件尚处于起步阶段,其中当然蕴藏着巨大的机会,但也有风险与之伴生。”
好文章,需要你的鼓励
谷歌发布代理支付协议AP2,支持AI代理代表用户自动购物和决策。该开放协议获得60多家商户和金融机构支持,旨在实现AI平台、支付系统和供应商间的互操作性。协议要求两级审批机制:意图授权和购物车授权,确保交易可追溯。支持全自动购买和加密货币支付。万事达、美国运通、PayPal等主要金融服务商已表示支持。
腾讯混元团队推出P3-SAM系统,这是首个能够自动精确分割任意3D物体的AI模型。该系统采用原生3D处理方式,摆脱了传统方法对2D投影的依赖,在近370万个3D模型上训练而成。P3-SAM支持完全自动分割和交互式分割两种模式,在多个标准测试中达到领先性能,为游戏开发、工业设计等领域提供了强大的3D理解工具。
CrowdStrike在其年度Fal.Con 2025大会上发布了智能代理安全平台和智能代理安全团队两款新产品,旨在应对AI时代日益增长的安全需求。新平台基于企业图谱架构,统一企业遥测数据,配备AI优化查询语言。Charlotte AI AgentWorks提供无代码平台,让安全团队可轻松构建和部署可信安全代理。智能代理安全团队则通过AI驱动的代理直接服务客户,解决传统防御无法应对AI速度威胁的问题。
NVIDIA Research推出了革命性的UDR系统,让用户可以完全自定义AI研究助手的工作策略。该系统解决了传统研究工具固化、难以专业化定制的问题,支持任意语言模型,用户可用自然语言编写研究策略,系统自动转换为可执行代码。提供三种示例策略和直观界面,实现了AI工具的民主化定制,为专业研究和个人调研提供了前所未有的灵活性。