北京下雪了,我先来拍两张。——咔嚓!
图像是最为普及的一种信息载体。而对于如何改善图像质量,提高图像的清晰度,就变成了一个图像处理领域的难题,图像超分辨率技术因此而生,并成功应用到了计算机图像视觉、医学等领域。
近日,小米雷军发微博表示,“来自小米最新出炉的论文,基于弹性搜索在图像超分辨率问题上取得了令人震惊的结果,该模型已开源。”随后与网友评论互动中,雷军还指出“现在相机技术高度依赖人工智能图像技术的进步!”可以看出,这项成果可能在不久的将来会在小米的硬件产品中得到应用。
论文的全称为《Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search》(论文下载链接:https://www.paperweekly.site/papers/2786),论文基于弹性搜索(宏观+微观)在超分辨率问题上取得了令人震惊的结果。在相当的 FLOPS 下生成了多个模型,结果完胜 ECCV 2018 明星模型 CARNM(乘加数参数数量少,PNSR/SSIM 指标高,文中称 dominate),这应该是截止至 2018 年可比 FLOPS 约束下的 SOTA(涵盖 ICCV 2017 和 CVPR 2018)。而达到这样的效果,论文基于一台 V100 用了不到 3 天时间。
此外,论文还给出了几个前向模型。要知道上一篇论文中他们初步结果是击败 CVPR 2016,才半个月时间就提升这么大,这也进一步验证了 AutoML NAS 技术的强大和可怕。需要指出的是,该项技术具有一定的普适性,理论上可以应用于任何监督学习,值得关注和学习。
好文章,需要你的鼓励
人工智能开发商Anthropic为其旗舰聊天机器人Claude推出新的医疗健康功能,用户现在可以与服务共享医疗记录以更好地了解自己的健康状况。Claude可以连接官方医疗记录和苹果健康等健身应用,进行更个性化的健康对话。新功能现已向美国的Claude Pro和Max订阅用户开放。公司强调该工具不用于诊断或治疗建议,而是帮助用户理解复杂医疗报告,为医患沟通做准备,并承诺严格保护用户隐私数据。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
谷歌发布通用商务协议(UCP)开放商务标准,旨在让AI智能体自动化整个购物流程,从产品发现到支付再到售后服务。该协议与Shopify、Target、沃尔玛等零售商合作开发,支持AI智能体协同处理客户购买流程各环节。谷歌还推出品牌商业智能体和直接优惠工具,优化AI搜索中的购物体验。麦肯锡预测智能体商务到2030年将成长为3万亿美元市场。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。