北京下雪了,我先来拍两张。——咔嚓!
图像是最为普及的一种信息载体。而对于如何改善图像质量,提高图像的清晰度,就变成了一个图像处理领域的难题,图像超分辨率技术因此而生,并成功应用到了计算机图像视觉、医学等领域。
近日,小米雷军发微博表示,“来自小米最新出炉的论文,基于弹性搜索在图像超分辨率问题上取得了令人震惊的结果,该模型已开源。”随后与网友评论互动中,雷军还指出“现在相机技术高度依赖人工智能图像技术的进步!”可以看出,这项成果可能在不久的将来会在小米的硬件产品中得到应用。
论文的全称为《Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search》(论文下载链接:https://www.paperweekly.site/papers/2786),论文基于弹性搜索(宏观+微观)在超分辨率问题上取得了令人震惊的结果。在相当的 FLOPS 下生成了多个模型,结果完胜 ECCV 2018 明星模型 CARNM(乘加数参数数量少,PNSR/SSIM 指标高,文中称 dominate),这应该是截止至 2018 年可比 FLOPS 约束下的 SOTA(涵盖 ICCV 2017 和 CVPR 2018)。而达到这样的效果,论文基于一台 V100 用了不到 3 天时间。
此外,论文还给出了几个前向模型。要知道上一篇论文中他们初步结果是击败 CVPR 2016,才半个月时间就提升这么大,这也进一步验证了 AutoML NAS 技术的强大和可怕。需要指出的是,该项技术具有一定的普适性,理论上可以应用于任何监督学习,值得关注和学习。
好文章,需要你的鼓励
美光发布新款2600客户端QLC固态硬盘,采用自适应写入技术动态优化缓存,使QLC闪存达到TLC级写入性能。该技术通过顶层SLC缓存处理新写入数据,二级TLC缓存应对SLC满载情况,空闲时将数据迁移至QLC模式。硬盘无DRAM设计,采用Phison四通道控制器和美光276层3D NAND,提供512GB至2TB容量选择,相比竞品QLC和TLC固态硬盘,顺序写入速度提升63%,随机写入速度提升49%。
清华和AIRI研究团队提出循环一致性图像编辑方法,仅需4步即可实现高质量图像编辑,速度比传统方法快10倍。该方法通过训练AI反复练习"看图-重画"过程提升图像理解能力,结合智能引导机制确保编辑质量,在多项评测中超越现有快速方法,为AI图像编辑的普及应用奠定基础。
在AMD AI推进大会上,CEO苏姿丰展示了公司在AI硬件和软件方面的显著进展。新一代MI350系列GPU性能提升4倍,高端MI355X在内存、计算吞吐量和性价比方面均优于英伟达B200。公司计划2026年推出Helios机架级平台,ROCm 7推理性能提升3.5倍。尽管在GPU训练、TCO优势等方面表现良好,但在NIMs微服务、企业级GPU市场渗透等领域仍需加强,以进一步缩小与英伟达的差距。
中科院、北大、清华联合开发的DualTHOR平台首次为双臂人形机器人提供真实家庭环境仿真训练。该平台不仅支持双手协作任务,还引入意外机制模拟现实不确定性。实验发现现有AI模型在双手协调方面表现不佳,为未来家庭服务机器人发展指明方向。